
CRESCENT
SOFTWARE, INC.

The Compression Workshop
Version 1.00

Entire contents Copyright (c) 1992 by Fred Sexton, Jr. and Crescent Software. Portions of the software and
documentation by Ethan Winer and Phil Weber. This manual was designed and typeset by Jacki Willmon.

CRESCENT SOFTWARE, INC.
11 BAILEY AVENUE
RIDGEFIELD, CT 06877
203-438-5300

LICENSE AGREEMENT

Crescent Software, Inc. grants a license to use the enclosed software and
printed documentation to the original purchaser. Copies may be made for
backup purposes only. Copies made for any other purpose are expressly
prohibited, and adherence to this requirement is the sole responsibility of
the purchaser. However, the purchaser does retain the right to sell or
distribute programs that contain Compression Workshop subroutines in
executable form only, so long as the primary purpose of the included
routines is to augment the software being sold or distributed. Source code,
object files, and libraries for any component of the Compression Workshop
may not be distributed without prior arrangement with Crescent Software,
Inc.

This license may be transferred to a third party only if all existing copies
of the software and documentation are also transferred.

WARRANlY INFORMATION

Crescent Software, Inc. warrants that this product will perform as adver
tised. In the event that it does not meet the terms of this warranty, and
only in that event, Crescent Software, Inc. will replace the product or
refund the amount paid, if notified within 30 days of purchase and if the
product was purchased directly from Crescent Software, Inc. Proof of
purchase must be returned with the product, along with a brief description
of how the product fails to meet the advertised claims.

CRESCENT SOFTWARE'S LIABILITY JS LIMITED 10 THE PURCHASE
PRICE. Under no circumstances shall Crescent Software, Inc. or the
authors of this product be liable for any incidental or consequential
damages, nor for any damages in excess of the original purchase price.

Table of Contents

The Compression Workshop Table of Contents

1. Introduction

Overview
Installation
Using The Compression Workshop

Using Integers
Memory Allocation
Using Quick Libraries
Loading Modules
Compiling And Linking .. .

QuickPak Professional
Error Codes
Subroutine Declarations
Array Redimensioning

2. Reference

1-2
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-7
1-8
1-9

Dynamic Array Routines . 2-1
Using Fixed-length String Arrays 2-1

CWDelArray (subroutine) 2-2
CWGetDetails (subroutine) 2-3
CWReadlDs (subroutine) 2-4
CWPackArray (subroutine) 2-5
CWPackArrayM (subroutine) 2-6
CWUnpackArray (subroutine) 2-7
CWUnpackArrayM (subroutine) 2-8

String Routines . 2-9
CWPackStringM (subroutine) 2-11
CWUnpackStringM (subroutine) 2-12

File Routines 2-13
CWDelFile (subroutine) 2-15
CWGetComment (subroutine) 2-16
CWMakeExt (subroutine) 2-17
CWPackedSize (function) 2-19
CWPackFiles (subroutine) 2-20
CWPackFilesD (subroutine) 2-22
CW Read Names (subroutine) 2-24
CWReleaseMem (subroutine) 2-26
CWSetMaxSize (subroutine) 2-27
CWUnpackFiles (subroutine) 2-28
CWUnpackFilesD (subroutine) 2-29
CW Update (subroutine) 2-30

Display Memory Routines 2-31

CRESCENT SOFrWARE. INC. ■

Table of Contents The Compression Worbh<>p

CWArray2Scrn (subroutine) 2-33
CWScrn2Array (subroutine) 2-34

Critical Error Handling 2-35
CWCritErr (function) 2-37

Time and Date Formatting Routines 2-39
FixDate (BASIC function) 2-41
FixTime (BASIC function) 2-42

QuickPak Professional Routines 2-43
DCount (function) 2-45
ErrorMsg (function) 2-46
Exist (function) 2-47
FClose (subroutine) 2-48
FCount (function) 2-49
FCreate (subroutine) 2-50
FGetA (subroutine) 2-51
FLof (function) 2-52
FOpen (subroutine) 2-53
FormatDiskette (function) 2-54
FPutA (subroutine) 2-56
GetAttr (function) 2-57
GetDisketteType (function) 2-58
Get Vol (function) 2-59
InterruptX (subroutine) 2-60
MakeDir (subroutine) 2-61
Mid Char (function) 2-62
PDQTimer (functionJ 2-63
PutVol (subroutine) 2-64
ReadDir (subroutine) 2-65
ReadFile (subroutine) 2-66
SetAttr (subroutine) 2-67
WhichError (function) 2-68

3. Compression Workshop Utilities

The CWPACK And CWUNPACK Utilities 3-1
Using CWPACK 3-1
Using CWUNPACK . 3-3

The Install°Utility 3-4

• ii

Using Install 3-4
Setting Up For Installation 3-5
Setting Destination Directories 3-5
Selecting Files for Installation . 3-6
Installing to Nested Directories . 3-7
Composite Monitors . 3-7

CRESCENT SOFTWARE. INC .

The Compression Workshop Table of Contents

The Backup And Restore Subroutines 3-8
Using CWBackup . 3-8
Using CWRestore 3-9
Compiling BACKUP.BAS 3-10
Modifying CWBackup and CWRestore 3-11

4. Technical Details

LZW Compression Overview 4-1
LZW Decompression Overview . 4-3
Compression Workshop File Structures 4-4

File Compression Rqutines . 4-4
Array Compression Routines . 4-5

CRESCENT SOFTWARE, INC. ■ iii

Chapter 1

Introduction

The Compression Workshap Introduction

INTRODUCTION

Thank you for purchasing the Compression Workshop. We have made
every effort to create a powerful, yet easy to use set of tools for linking
with Microsoft compiled BASIC. We sincerely hope that you find the
Compression Workshop both useful and informative. If you have a
comment, a complaint, or perhaps a suggestion for another BASIC-related
product, please let us know. We want to be your favorite software
company.

Before we begin discussing the contents of the Compression Workshop
disk and manual, please take a few moments to fill out the enclosed
registration card. Doing this entitles you to free technical support by
phone, and ensures that you are notified of possible enhancements and
new products. Many upgrades are offered at little or no cost, but we can't
tell you about them unless we know who you are! Note, however, that if
you purchased the Compression Workshop directly from us, the mail-in
portion of the registration card may have been removed. In this case, you
are already registered.

Also, please mark the Compression Workshop product serial number on
your disk label or manual cover. License agreements and registration
cards have an irritating way of becoming lost, and this helps you have the
number handy if you need to contact us. You may also want to note the
product version number in a convenient location. The version number is
stored on the distribution disk in the volume label. If you ever have to
call us for assistance, we will need to know your serial number, and
probably the version you are using as well.

To determine the version number for any Crescent Software product,
simply use the DOS VOL command, which displays the disk volume label:

VOL A:
Volume in drive A is CWShop 1.00

We are constantly improving all of our products, and you may want to call
us periodically and ask for the current version number. Major upgrades
are always announced, however minor additions or fixes are generally not.
If you are having any problems at all-even if you are sure it is not caused
by one of our products-please call us. We support all versions of
compiled BASIC, and can often provide better assistance than Microsoft.

CRESCENT SOITWARE, INC. ■ 1-1

Introduction The Compression Work.shap

Overview

The Compression Workshop is comprised of four major components:

I. A set of subroutines and functions that can be added to your
BASIC programs for compressing and decompressing array,
string, file, and video memory data.

2. A full-featured Install utility you can use to distribute your own
applications in a compressed format.

3. Subroutines to backup and restore disk data in a compressed
format.

4. Demonstration programs that show how the Compression
Workshop routines are used, and in many cases also serve as
useful utilities.

The compression and decompression routines are designed to work with
arrays, strings, and files. Numeric, TYPE, and fixed-length string arrays
may be stored in compressed form on disk either individually, or in groups
within a single file. One or more data and program files may also be
combined into a single compressed file.

Arrays may be compressed either in place (within memory), or stored to
a disk file. When storing a compressed array to a disk file you indicate
if the file is to be created, or if the array data is to be added to an existing
compressed file. Likewise, array data may be decompressed either in
place or read from disk. When compressing an array in place, the
compressed data replaces the original array contents, and the array is
redimensioned to the new, smaller size automatically. Separate routines
are used to manipulate data in memory and on disk.

String data may be compressed and decompressed in place only, and _the
result is assigned to the same string. Video memory may be copied to or
from an array using the supplied routines, and then compressed and
optionally stored on disk.

These routines cannot be used to compress or decompress entire conven
tional (not fixed-length) string arrays directly. However, if you have
Crescent's QuickPak Professional library you can first use the StringSave
routine to copy a string array to an integer array, and compress that. You
would then use StringRestore afterward to copy the data back again after
decompressing the integer array. QuickPak also lets you store compressed

■ 1-2 CRESCENT SOFTWARE, INC.

The Compression Workshop Introduction

data in either expanded or extended memory, to minimize the amount of
memory your program needs to run.

A compressed file that holds other files (not one that holds arrays) may
optionally be converted to a self-extracting .EXE program that will unpack
itself when run, placing all of the files it contains into the current or any
directory.

The backup and restore subprograms feature disk formatting, volume
labeling, recursing nested subdirectory levels, and they can optionally
manipulate each file's archive bit. They have been designed to automat
ically detect when the user changes disks, making them as easy to use as
possible.

By default, Compression Workshop files have a .CWF extension, though
you may of course use any other extension if you prefer. Note that
compressed files which contain array data are different internally from
compressed files that contain files. Therefore, you should consider using
a different extension naming convention if there is any chance you might
confuse a file's contents in your programs.

Finally, several demonstration programs are provided to show how the
various Compression Workshop subroutines are used. These include
utilities for compressing and decompressing groups of files based on
command line options, an Install program that supports multiple distribu
tion disks and multiple target paths, and a stand-alone hard disk backup
program that also shows how the backup and restore routines can be added
to your own programs.

All of the other BASIC demonstration programs have names that begin
with the word DEMO, so you can easily identify them.

Installation

To install the Compression Workshop simply log onto your floppy drive
and enter INSTALL at the DOS command prompt. On-screen instructions
let you specify which drive and directory the product is to be installed to,
and whether to install the assembly language source code. Note that you
do not need to install the assembler source code to use the Compression
Workshop. It is provided solely for the benefit of those people who are
interested.

The default directory for installation is C:\CWSHOP, though you may of
course change that if you prefer. If the destination directory does not yet
exist INSTALL will create it for you.

CRESCENT SOFTWARE, INC. ■ 1-3

Introduction The Compression Worbhap

Using The Compression Workshop

The Compression Workshop includes subroutines written using both
BASIC and assembly language. The assembly language routines are
furnished as Quick and LINK library files, and the BASIC routines are
meant to be added to your programs by loading them as modules.

Using Integers
IMPORTANT: All numeric parameters must be integers except as noted.
Integers are identified using a percent(%) suffix; for example, Variable%
is an integer variable. Unless you are writing scientific or engineering
programs that rely heavily on floating point (single and double precision)
values, we recommend that you add the statement DEFINT A-Z as the
very first line in your programs. Using DEFINT tells BASIC that all of
your variables are to be integers unless you specify otherwise. You can
then override this default as necessary when single precision, double
precision, long integer, or Currency variables are needed. Currency
variables are available in PDS 7 .0 and later versions of Microsoft BASIC
only.

Memory Allocation
Many of the Compression Workshop routines require a block of memory
for use as a work space as they process your data. This memory is
allocated by the various routines automatically, and it never exceeds 64K.
Unless your program is using most of the PC's available memory for itself,
this is not likely to cause a problem. Note that near memory (often called
DGROUP) is never used by these routines, only far memory.

The exact amount of memory needed is listed at the beginning of each
group of routines in the reference portion of this manual. However, this
memory is not released automatically because the same memory is used
repeatedly by all of the routines. Therefore, it is up to you to call
CWReleaseMem when your program is no longer using these routines.
As its name implies, CWReleaseMem releases the memory used by the
various Compression Workshop routines, and makes it available to your
BASIC program.

Please see the CWReleaseMem routine for more information on releasing
memory.

■ 1-4 CRESCENT SOFTWARE, INC.

The Compression Work.shoe Introduction

Using Quick Libraries
To begin a QuickBASIC session and load the CWSHOP.QLB Quick
Library, start QuickBASIC as follows:

QB [program] /L CWSHOP

If you are using BASIC 7 PDS or a newer version of Microsoft compiled
BASIC, instead specify the CWSHOP7 .QLB file like this:

QBX [program] /L CWSHOPI

As shown, you can optionally specify the name of a BASIC program that
is also to be loaded.

IMPORTANT: A special version of the InterruptX routine is provided with
the Compression Workshop. Unlike the standard version that comes with
BASIC, this version was designed to accept only one instance of the
Registers TYPE variable to improve efficiency. Please see the description
of InterruptX elsewhere in th is manual.

Loading Modules
Compression Workshop routines that are written in BASIC are intended
to be loaded as modules into the Microsoft BASIC editor. You do this
with the Load selection from the File menu. Once a source module has
been loaded into the BASIC editor, you may call the subprograms and
functions it contains.

When you subsequently save your main program, BASIC will create a
Make file (having a . MAK extension) that contains the names of the
modules your main program requires. Then when you use File/Open to
open your main program later, the necessary support modules will also be
loaded automatically.

Compiling And Linking
The Compression Workshop routines are provided in two LINK libraries,
with one for use with QuickBASIC and BASIC 7 PDS when using near
strings, and the other for use with BASIC PDS and later versions when
compiling for use with far strings.

If you are using QuickBASIC or BASIC PDS with near strings, you should
link your compiled BASIC programs with the CWSHOP.LIB library file
as follows:

LINK PROGRAM [objfiles] • , NUL, CWSHOP.LIB ;

CRESCENT SOFTWARE, INC. ■ 1-5

Introduction The Compression Workshc,,

When creating a program that uses far strings you will instead link with
the CWSHOP7.LIB file like this:

LINK PROGRAM [objfiles] . , NUL, CWSHOP7.LIB;

There are a number of option switches that LINK recognizes, and the
examples above merely show the minimum commands necessary to use
each version of the Compression Workshop I ibraries. Refer to your
BASIC manuals for information about other BC and LINK option
switches.

■ QuickPak Professional

The following routines from our QuickPak Professional product are
included in CWSHOP.LIB and CWSHOP7 .LIB for use by the backup and
restore subprograms and also the CWPACK utility (lnterruptX is from
P.D.Q,):

DCount ErrorMsg Exist
FClose FCount FCreate
FGetA FLof FOpen
FormatDiskette FPutA GetAttr
GetDisketteType GetVol InterruptX
MakeDir MidChar PDQTimer
PutVol ReadDir ReadFile
SetAttr Which Error

Therefore, if you also have QuickPak you should link with the /noe switch
to prevent LINK from reporting the duplicate names as an error:

LINK /NOE PROGRAM , , NUL, CWSHOP.LIB PRO.LIB ;

And if you are using BASIC 7 PDS or a later version with far strings do
this:

LINK /NOE PROGRAM , , NUL, CWSHOP7.LIB PR07.LIB ;

You can create a combined Quick Library that contains all of the routines
from both products as follows:

LINK /Q CWSHOP.LIB PRO.LIB, BOTH.QLB, NUL, BQLB45.LIB;

The BQLB45.LIB file comes with QuickBASIC 4.5. If you are using
BASIC PDS or a later version you will instead specify CWSHOP7.LIB
and PR07.LIB as the main libraries, and use QBXQLB.LIB as the last
argument on the LINK command line.

■ 1-6 CRESCENT SOF1WARE, INC.

The Compression Workshop Introduction

Note that creating a combined library this way will cause LINK to generate
"Duplicate definition" errors because some routines are in both libraries.
However, you can safely ignore these errors and the resulting Quick
Library will still function as expected.

Error Codes
Most of the routines in the Compression Workshop return their success or
failure in an integer error code parameter. If no error occurs, then the
ErrCode% variable is returned holding a value of zero. Errors are
indicated by one of the values listed in the table below.

ErrCode% = -1 Unable to allocate work area
ErrCode% = -2 Unable to create file
ErrCode% = -3 Unable to open file
ErrCode% = -4 File read/write error
ErrCode% = -5 Incorrect file ID
ErrCode% = -6 Unable to create temporary file
ErrCode% = -7 Unable to delete file
ErrCode% = -8 Input file too big to fit on one disk
ErrCode% = -9 Write attempt failed (disk full)
ErrCode % = -10 Critical error occurred
ErrCode % = -11 Incorrect time or date string length
ErrCode% = -12 Unable to open SELFEXT.EXE
ErrCode% = -13 No matching files found
ErrCode% = -14 Unable to compress
ErrCode% = -15 Array is not dynamic
ErrCode% = -16 Array ID not found
ErrCode% = -17 Array dimension mismatch
ErrCode% = -18 Bvtes per element mismatch

NOTE: To reduce the number of arguments passed and thus reduce code
size, the ErrCode% parameter is also used by some of the routines to pass
a Mode value when they are called.

To simplify reporting errors you can use the ERRCODES.BI file. This is
a BASIC Include file that dimensions an array named CWMsg$0, and
assigns its elements to the appropriate text for each error message. This
array is dimensioned with elements numbered -18 through 0, so you can
directly use the values returned in the ErrCode% variable:

IF E rrCode% THEN PR I NT CWMsg$ (E rrCode)

CRESCENT SOITWARE, INC. ■ 1-7

Introduction The Compression Workshop

Note error number -IO, which indicates that a DOS critical error occurred.
Critical errors are those that result in the infamous "Abort/Retry/Fail"
DOS message, and they occur when a disk is not in the drive, or when
the disk has not been formatted. Unfortunately, DOS handles critical
errors differently from other errors, and uses a different numbering system
for them.

If a critical error occurs you can determine which one with the CWCrit
Err % function. All of the DOS critical errors that can be returned by the
Compression Workshop routines are also defined in the ERRCODES.BI
file in the CWCritMsg$0 string array. The standard DOS critical error
codes are as follows:

CWCritErr% = 0
CWCritErr% = I
CWCritErr% = 2
CWCritErr% = 3
CWCritErr% = 4
CWCritErr% = 5
CWCritErr% = 6
CWCritErr% = 7
CWCritErr% = 8
CWCritErr% = 9
CWCritErr% IO
CWCritErr% 11
CWCritErr% 12
CWCritErr% 15

Disk write-protected
Invalid drive
Drive not ready
Unknown command
CRC data error
Bad request length
Seek error
Unknown disk format
Sector not found
Printer out of paper (not possible here)
Write fault
Read fault
Other error
Invalid disk change (DOS 3.0 or later only)

The following code shows the steps needed to properly report every type
of error that can occur when using the Compression Workshop routines:

IF ErrCode% THEN
PRINT "Error"; ErrCode%; "occurred: ";
PRINT CWMsg$(ErrCode%)
IF ErrCode% = -10 THEN

PRINT "' -- "'; CWCritMsg$(CWCritErr%)
END IF

END IF

Subroutine Declarations
BASIC does not require you to declare called subroutines, though doing
this can help you to avoid system crashes caused by using the wrong
number or type of parameters. However, functions must be declared
whether they are written in BASIC or assembly language.

■ 1-8 CRESCENT SOFTWARE, INC.

The Compression Workshop Introduction

The CWDECL.BI file contains declarations for all of the Compression
Workshop subroutines and functions, and it is meant to be added to your
programs using the '$INCLUDE metacommand. If you are using both
ERRCODES.BI and CWDECL.BI in the same program you must list
CWDECL.BI first, because BASIC does not allow executable code to be
placed before DECLARE statements. (ERRCODES.BI contains code that
dimensions and assigns the CWMsg$0 and CWCritMsg$0 string arrays.)

Array Redimensioning
Many Compression Workshop routines accept as parameters entire arrays
that are passed using empty parentheses. Some of these routines, such as
CWReadNames and CWUnpackArray, also redimension the arrays to the
correct number of elements to hold the returned information. Therefore,
before calling these routines you must establish the array using REDIM
generally with only one element-to ensure that the array is dynamic.

The following is from the syntax example for CWReadNames elsewhere
in this manual:

RED IM CW(I TO I) AS CWType
CALL CWReadNames (Fi leName$, CW(), ErrCode%)
PRINT "There are"; UBOUND(CW); "files present."

Note that all of the routines that redimension arrays honor the starting
element number in effect at the time they are called. Here, the array was
established with element one as the first element, so the value UBOUND
returns corresponds to the number of file names present. Had the array
been established using element zero as the first element, then the actual
number of file names would be one less:

REDIM CW(O) AS CWType
CALL CWReadNames (Fi leName$, CW(), ErrCode%)
PRINT "There are"; UBOUNO(CW) - I; "files present."

CRESCENT SOFfWARE, INC. ■ 1-9

Chapter 2

Reference

The Compression Workshop Reference

DYNAMIC ARRAY ROUTINES

The Compression Workshop includes a number of routines that operate
on BASIC dynamic arrays, both in memory and in disk files. Routines
having names that end with the letter M compress and decompress array
data in memory; the remaining routines operate on arrays that are stored
in disk files.

The dynamic array routines require 46,016 bytes of far memory to be
available to them for use as a work space. This memory is allocated
automatically by the various Compression Workshop array routines, but it
is up to you to call CWReleaseMem (using a Mode value of I) to release
the memory when you no longer need it. See the description for
CWReleaseMem for more information.

When compressing array data to a disk file, you assign an ID number that
will be used to subsequently identify each array in the file. This number
can be any integer value between -32768 and 32767; therefore, as many
as 65,536 arrays may be stored in a single compressed file.

Arrays are stored in a disk file one at a time, and you specify whether the
file is to be created or appended to. Therefore, to store several arrays you
will first call CWPackArray asking it to create a new file, and then call it
repeatedly for each additional array telling it to append to the same file.
This is shown in the CWPackArray description that follows.

Note that updating an existing array in a compressed file which contains
more than one array is a two-step process: First the existing version is
deleted with the CWDelArray routine, and then the new version of the
array is added using CWPackArray to append it to the same file.

Using Fixed-length String Arrays

To process fixed-length string arrays the array must be created as a TYPE
array as follows:

TYPE FLen
A AS STRING • LL

END TYPE
REDIM Array(NN) AS FLen

'LL = desired length

'NN = desired number of elements

You cannot pass a fixed-length string array directly using empty paren
theses.

CRESCENT SOFrWARE. INC. ■ 2-1

Reference The Compression Workshc,p

CWDelArray (subroutine)

■ Purpose:

Deletes an array from a compressed file.

■ Syntax:

CALL CWDe lArray(Fi leName$, Array ID%, ErrCode%)

■ Where:

FileName$:
Array!D%:
ErrCode%:

■ Comments:

Name of an existing compressed file
Unique array identifier
Return value as listed in the section Error Codes

See the DEMOARAY.BAS demonstration program for an exampleofusing
CWDe!Array.

■ 2-2 CRESCENT SOFfWARE, INC.

The Compression WorkshoP Re Ference

CWGetDetails (subroutine)

■ Purpose:

CWGetDetails fills an integer array with the number of elements contained
in the specified array. An array is used to return the information because
the compressed arrays may have more than one dimension. CWGetDetails
is meant to be used in conjunction with CWRead!Ds, to obtain complete
information about the arrays stored in a compressed file.

■ Syntax:

CALL CWGetDetails(FileName$, Array!D%, Details%(). ErrCode%)

■ Where:

FileName$:
Array!D%:

Name of an existing compressed file
Valid array ID (which array to report on)

Details%Q: Integer array in which to return the compressed array
details

ErrCode%: Return value as listed in the section Error Codes

■ Comments:

The array passed as Details%() must be properly sized, since it is not
redimensioned by CWGetDetails. The correct number of elements is
determined by first calling CWRead!Ds:

RED IM Details%(I to Alnfo(X) .ArrayDimens ions)

See the description for CWRead!Ds elsewhere in this manual, and also
see the DEMOARA2.BAS example program.

CRESCENT SOFfWARE, INC. ■ 2-J

Reference The Compression Workshap

CWReadlDs (subroutine)

■ Purpose:

CWReadIDs fills a TYPE array with information about all of the arrays
present in a compressed file.

■ Syntax::

CALL CWRead!Ds(Fi leName$, A Info(), ErrCode%)

■ Where:

FileName$: Name of an existing compressed file
Alnfo0:
ErrCode%:

Special TYPE array that returns the array information
Return value as listed in the section Error Codes

■ Comments:

The array passed as Alnfo0 is constructed as follows:

TYPE Arraylnfo
Array!D AS INTE(ER
BytesPerE lement AS INTEGER
ArrayDimensions AS INTEGER

END TYPE
REDIM Alnfo(l TO I) AS Arraylnfo

The array can be any size, as it will be redimensioned to the proper number
of elements by CWReadJDs.

After running DEMOARAY.BAS to create a compressed file containing
array information, run DEMOARA2.BAS to see how CWReadIDs can be
used.

■ 2-4 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

CWPackArray (subroutine)

■ Purpose:

Compresses an array and saves it in a compressed file.

■ Syntax:

CALL CWPackArray(Array(). Array ID%, Fi leName$, ErrCode%)

■ Where:

Array0:
Array!D%:

Array to compress, empty parentheses are required
Unique array identifier you assign

FileName$: Name of compressed file to create

ErrCode% (when calling):

Zero = Create new compressed file (overwrite any existing)
Non-zero = Append to existing compressed file

ErrCode% (upon return):

Return value as listed in the section Error Codes

■ Comments:

The value of ErrCode% when the call is made determines whether
CWPackArray will create a new compressed file or append to an existing
compressed file. Upon return, ErrCode% indicates the success or failure
of the operation, as explained in the section Error Codes.

See the DEMOARAY.BAS example program.

CRESCENT SOFTWARE, INC. ■ 2-5

Reference The Compression Workshap

CWPackArrayM (subroutine)

■ Purpose:

Compresses an array in place (in memory).

■ Syntax:

CALL CWPackArrayM(Array(), ErrCode%)

■ Where:

ArrayO:
ErrCode%:

Array to compress, the empty parentheses are required
Return value as listed in the section Error Codes

■ Comments:

The array will be redimensioned to a smaller size, and then filled with the
compressed data.

■ 2-6 CRESCENT SOFTWARE, INC.

The Compression Workshap Reference

CWUnpackArray (subroutine)

■ Purpose:

Reads and unpacks an array contained in a compressed file.

■ Syntax:

CALL CWUnpackArray(Array(), Array ID%, Fi leName$, ErrCode%)

■ Where:

ArrayO: Array to decompress, the empty parentheses are re
quired

ArrayID%:
FileName$:

Unique array identifier (which array to decompress)
Name of an existing compressed file

ErrCode%: Return value as listed in the section Error Codes

■ Comments:

The type of the array and whether it is multi-dimensional must be known
by the programmer. The array will be redimensioned to the proper number
of elements, but you must at least establish the number of dimensions and
also ensure the array is dynamic using either REDIM or '$DYNAMIC.

For example, if you used CWPackArray to save an array that was
dimensioned using this:

REDIM Array%(! TO 10, I TO 100)

then you should use REDIM before calling CWUnpackArray like this:

REDIM Array%(! TO I. I TO I)

Note that any starting array element number may be used, and that element
number will be retained by CWUnpackArray. So if the array was
dimensioned originally using REDIM (1 TO 10) and then saved using
CWPackArray, using REDIM (0) before calling CWUnpackArray will
create the array with elements (0 1D 9) instead of (I 1D 10).

See the DEMOARAY.BAS example program.

CRESCENT SOFTWARE, INC. ■ 2-7

Reference The Compression Workshap

CWUnpackArrayM (subroutine)

■ Purpose:

Decompresses an array in place (in memory).

■ Syntax:

CALL CWUnpackArrayM(Array(), ErrCode%)

■ Where:

ArrayO: Previously compressed array
ErrCode%: Return value as listed in the section Error Codes

■ Comments:

The array will be redimensioned to the original number of elements and
then decompressed.

■ 2-8 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

STRING ROUTINES

The string routines require 46,016 bytes of far memory to be available to
them for use as a work space. This memory is allocated automatically by
the Compression Workshop string routines, but it is up to you to call
CWReleaseMem (using a Mode value of I) to release the memory when
you no longer need it. See the description for CWReleaseMem for more
information.

Strings must be at least eight characters long to be compressed. Further,
in order to be compressed a string must contain repeated characters.
Therefore, longer strings are more likely to be compressed effectively.

Note that you cannot retrieve a compressed string that was written to disk
using INPUT or LINE INPUT. These commands expect to find a
CHR$(13) carriage return in the file, to indicate the end of the string.
Since compressing a string may happen to imbed a CHR$(13) within it,
BASIC will stop reading at that point, and also discard the byte. If you
plan to store compressed strings on disk, we recommend that you precede
each one with a length word in the file. This way you can retrieve the
string using Binary file access and the GET command.

The following example compresses and writes two strings to a disk file,
and then reads them back again and decompresses them:

OPEN .. TEST .OAT .. FOR BINARY AS #1

CALL CWPackStringM(Sl$, ErrCode%)
Length% = LEN (SI$)
PUT #1, Length%
PUT #1, , Sl$

CALL CWPackStringM(S2$, ErrCode%)
Length% = LEN(S2$)
PUT #I, Length%
PUT#!,, S1$

CLOSE #1

OPEN .. TEST.DAT .. FOR BINARY AS #1

GET # 1 , , Length%
SI$ = SPACE$(Length%)

CRESCENT SOFTWARE, INC.

'open for Binary

'pack this string
'get its length
'first write the length
'then write the string

'as above

'close the file

'open the file again

'first get the length
'create the string

■ 2-9

Reference The Compression Workshap

GET#!,, SI$
CALL CWUnPackStringM(Sl$, ErrCode%)

'then read it from disk
'finally unpack it

GET #1, , Length%
S2$ = SPACE$ (Length%)
GET#!, , S2$
CALL CWUnPackStringM(S2$, ErrCode%)

'as above

Two strings were used to show that you can easily walk through the file
to retrieve them in succession, much as you would with INPUT or LINE
INPUT. Binary file operations use the length of the destination or source
variable to know how many bytes are to be read or written respectively.
If you plan to write and read many strings, you can use the following
BASIC subprograms to do this more efficiently:

SUB PutString(Work$, Fi leNumber%, ErrCode%)
CALL CWPackStringM(Work$, ErrCode%)
IF ErrCode% THEN EXIT SUB
Length% = LEN (Work$)
PUT #Fi leNumber%, , Length%
PUT #Fi leNumber$, , Work$

END SUB

SUB GetString(Work$, Fi leNumber%, ErrCode%)
GET #1, , Length%
Work$ = SPACE$(Length%)
GET #Fi leNumber:, , Work$
CALL CWUnPackStringM(Work$, ErrCode%)

END SUB

You can either use BASIC's EOF function to determine when you have
read all of the strings in a Binary file, or store the number of strings at
the very beginning of the file. In that case you would first use GET to
read the total number of strings, and then use a FOR/NEXT loop to read
each string. This method is ideally suited for reading entire string arrays:

■ 2-10

OPEN "TEST.DAT" FOR BINARY AS #!
GET #I, , NumStrings%
REDIM Array$(! TO NumStrings%)

FOR X = I TO NumStrings%
CALL GetString(Array$(X), !, ErrCode%)
IF ErrCode% THEN EXIT FOR

NEXT

CLOSE #1
IF ErrCode% THEN PRINT "Error reading string#"; X

CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

CWPackStri ngM (subroutine)

■ Purpose:

Compresses a string in place (in memory).

■ Syntax:

CALL CWPackStringM(Work$, ErrCode%)

■ Where:

Work$: String to be compressed
ErrCode%: Return value as listed in the section Error Codes

■ Comments:

The string is resized to a shorter length, and then filled with a compressed
version of its original contents.

Strings less than eight characters long cannot be compressed, and attempt
ing to do that will result in an "Unable to compress" error (-14).

CRESCENT SOFrWARE. INC. ■ 2-11

Reference The Compression Workshop

CWUnpackStringM (subroutine)

■ Purpose:

Decompresses a string in place (in memory).

■ Syntax:

CALL CWUnpackStringM(Work$. ErrCode%)

■ Where:

Work$: Previously compressed string
ErrCode%: Return value as listed in the section Error Codes

■ Comments:

The string will be restored to its original length and contents.

Be careful not to call CW U npackStringM with a string that is not already
compressed. Depending on the string's contents, BASIC might crash with
an "Out of string space" error if falsely decompressing the data creates a
very long string in the process.

■ 2-12 CRESCENT SOFfWARE, INC.

The Compression Workshop Reference

FILE ROUTINES

These routines operate on files that already exist, and let you compress
one or more of them storing the result into a single compressed file. When
compressing files the original files are never altered. Rather, they are
compressed in memory, and then either added to a newly created file or
appended to an existing compressed file.

Compressed files may contain an optional comment string, to help identify
their contents. In the supplied INSTALL.BAS program, the compressed
file comments are used to indicate the default destination directories.

The file routines require 56,016 bytes of far memory to be available to
them for use as a work space. This memory is allocated automatically by
the Compression Workshop routines, but it is up to you to call CWRelease
Mem (using a Mode value ofO) to release the memory when you no longer
need it. See the description for CWReleaseMem for more information.

The names of all files that are being added to a compressed file may include
a full path and drive, up to a maximum length of 67 characters.

An important feature of the Compression Workshop file routines is the
ability to combine multiple disk files into more than one compressed file,
to allow them to be fit onto floppy disks. You can create multiple
compressed files from a single file specification in one of two ways:

I. If the destination disk becomes full while creating a compressed
file, the file compression routines will return an ErrCode% value
of -9. You will then leave ErrCode% set to -9 and call the file
compression routine again, after prompting the user to insert a
new disk and enter a new file name.

2. If you are creating files on a hard disk with the intention of
copying them to a floppy disk later, you can use the CWSetMax
Size routine to force a "Disk full" error when the file reaches a
given size. You will then call the routine again with ErrCode %
left set to -9, specifying a different name for the next consecutive
compressed file to be created.

Note that compression and decompression speeds are greatly affected by
disk access times. Thus, using a hard disk or RAM drive is considerably
better than using a floppy disk.

CRESCENT SOFTWARE, INC. ■ 2-13

Reference The Compression Workshap

This page intentionally left blank.

■ 2-14 CRESCENT SOFfWARE, INC.

The Compression Workshop Reference

CWDelFile (subroutine)

■ Purpose:

Deletes a file from within an existing compressed file.

■ Syntax:

CALL CWDelFi le(Fi leName$, Spec$, ErrCode%)

■ Where:

FileName$: Name of an existing compressed file
Spec$: File(s) to be deleted, may contain the (*) wildcard, the

(?) wildcard is not supported
ErrCode%: Return value as listed in the section Error Codes

■ Comments:

See the CWPACK.BAS program for an example of calling CWDelFile.

CRESCENT SOFrWARE, INC. ■ 2-15

Reference The Compression WorkshoP

CWGetComment (subroutine)

■ Purpose:

Returns a compressed file's comment string.

■ Syntax:

CALL CWGetConment (Fi leName$, Cmt$, ErrCode%)

■ Where:

FileName$:
Cmt$:
ErrCode%:

■ Comments:

Name of an existing compressed file
Returns holding the compressed file's comment string
Return value as listed in the section Error Codes

If ErrCode% is returned set to zero and LEN(Cmt$) = 0, then the file
does not contain a comment string.

■ 2-16 CRESCENT SOFfWARE, INC.

The Compression Workshop Reference

CWMakeExt (subroutine)

■ Purpose:

Creates a self-extracting .EXE program from a compressed file.

■ Syntax:

CALL CWMakeExt(Fi leName$, Buffer$, ErrCode%)

■ Where:

FileName$: Name of an existing compressed file
Buffer$: String to place into keyboard buffer (9 characters max

imum)
ErrCode%: Return value as listed in the section Error Codes

■ Comments:

A new file with the same name as the compressed file but an . EXE
extension is created in the directory where the compressed file resides.
The new file is a composite of SELFEXT.EXE (supplied with the
Compression Workshop) and the compressed file. When the self-extract
ing program is run it "unpacks" itself leaving the files it contains in the
current directory. Comments contained in the original compressed file
are echoed to the screen when the self-extracting program file executes.

The compressed file parameter may include a path, but SELFEXT.EXE
must be in the same directory as the executing program. This is BASIC's
directory when in the BASIC editing environment. If you are using
QuickBASIC and running QB.EXE from a directory other than the one in
which it resides, you will need to place a copy of SELFEXT.EXE in the
directory that holds QB.EXE.

The contents of Buffer$ is placed into the PC's type-ahead buffer when
the self-extracting program file finishes running. This lets you run another
program or batch file automatically.

CRESCENT SOFfWARE. INC. ■ 2-17

Reference The Compression Workshc,p

To start another program use:

Buffer$= "PROGNAME" + CHR$ (13)

If Buffer$ is null, no command is placed into the keyboard buffer.

IMPORTANT: CWMakeExt requires DOS 3.0 or later both when creating
a self-extracting file and also when that file is run.

• 2-18 CRESCENT SOFTWARE. INC.

The Compression Workshop Reference

CWPackedSize (function)

■ Purpose:

CWPackedSize returns the new size a file will become when it is added
into a compressed file.

■ Syntax:

NewSize& = CWPackedSize&{FileName$. ErrCode%)

■ Where:

FileName$:
ErrCode%:
NewSize&:

■ Comments:

Name of the file to test
Return value as listed in the section Error Codes
New size of the file after compression

Because CWPackedSize has been designed as a function, it must be
declared before it may be used.

CWPackedSize lets you know how small a file will become when it is
compressed later, and it is meant to help you avoid potential "Disk full"
errors before they occur.

The value returned by CWPackedSize includes the size of the internal file
header, but not the main compressed file header (six bytes + comment
length). Therefore, if you are going to compress only one file you should
add 6 plus the comment length, to determine the exact size the compressed
file will be.

CWPackedSize works by actually compressing the file on a trial basis, and
then seeing how large the result is. Therefore, you should call CWRe
leaseMem after using this routine if your program needs all available
memory.

CRESCENT SOFrWARE, INC. ■ 2-19

Reference The CompreHion Work.shoe

CWPackFiles (subroutine)

■ Purpose:

CWPackFiles compresses all of the files that match the search specification
and stores them in the destination file.

■ Syntax:

CALL CWPackFi les(Spec$, Dest$, Cmt$, ErrCode%)

■ Where:

Spec$:

Dest$:
Cmt$:

Specification for file(s) to compress, may include a path,
accepts both DOS wildcards (* and ?)
Name of the destination compressed file
Comment string for the compressed file (optional)

ErrCode% (when calling) :

Zero = Create a new compressed file (overwrite any existing)
Non-zero = Append to an existing compressed file
-9 = Continue the last operation

ErrCode% (upon return) :

Return value as listed in the section Error Codes

■ Comments:

The value of ErrCode% when the call is made determines whether this
routine will create a new compressed file or append to an existing
compressed file. When appending to an existing file the comment string
(Cmt$) is ignored if present. A comment string can be as long as BASIC
allows-up to 32,767 characters. ·

Upon return, ErrCode% indicates the success or failure of the operation,
as explained in the section Error Codes. The section that follows lists
some of the possible reasons for errors.

ErrCode% = -9 (file write failed) will occur if the disk is full, or if you
specified a maximum file size using CWSetMaxSize and that limit was
reached. In either case, your program should prompt the user to insert
another disk. Then call CWPackFiles again with a new compressed file
name, leaving ErrCode% set to -9. The same file specification will be

■ 2-20 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

used for the new compressed file, and processing will resume with the
same input file that did not fit in the previous compressed file. If a single
file is larger than the amount of disk space available it cannot be
compressed with this routine.

Note that the first compressed file that is created must not be in the same
directory as the search specification if"*.*" was used, because it will be
added into the second compressed file.

It is not possible to compress a file and add it to a compressed file having
the same name. Further, files must be at least two bytes long to be added
to a compressed file.

When using the append mode with a "*. *" file specification, the calling
program must ensure that files already in the existing compressed file
won't be found, because this would put a second copy of the files into the
destination compressed file.

CRESCENT SOFTWARE, INC. ■ 2-21

Reference The Compression Workshap

CWPackFilesD (subroutine)

■ Purpose:

Compresses all files that match the search specification and are dated later
(newer) than the time/date specified, and adds them to the destination file.

■ Syntax:

CALL CWPackFilesD(Spec$, Dest$, Cmt$, Tim$, Oat$, ErrCode%)

■ Where:

Spec$:

Dest$:
Cmt$:
Tim$:
Oat$:

Specification for file(s) to compress, may include a path,
accepts both DOS wildcards (* and ?)
Name of the destination compressed file
Comment string for compressed file
8-character time string HH:MM:SS (military time)
JO-character date string MM-DD-YYYY

ErrCode% (when calling) :

Zero = Create a new compressed file (overwrite any existing)
Non-zero = Append to an existing compressed file
-9 = Continue the last operation

ErrCode% (upon return) :

Return value as listed in the section Error Codes

■ Comments:

The value of ErrCode% when the call is made determines whether this
routine will create a new compressed file or append to an existing
compressed file. When appending to a file the comment parameter (Cmt$)
is ignored if present. A comment string can be as long as BASIC
allows-up to 32,767 characters.

Upon return, ErrCode% indicates the success or failure of the operation,
as explained in the section Error Codes. The section that follows lists
some of the possible reasons for errors.

ErrCode% = -9 (file write failed) will occur if the disk is full, or if you
specified a maximum file size using CWSetMaxSize and that limit was
reached. In either case your program should prompt the user to insert

■ 2-22 CRESCENT SOFfWARE, INC.

The Compression Workshop Reference

another disk. Then call CWPackFilesD again with a new compressed file
name, leaving ErrCode% set to -9. The same file specification will be
used for the new compressed file, and processing will resume with the
same input file that did not fit in the previous compressed file. If a single
file is larger than the amount of disk space available it cannot be
compressed with this routine.

Note that the first compressed file that is created must not be in the same
directory as the search specification if"*.*" was used, because it will be
added into the second compressed file.

It is not possible to compress a file and add it to a compressed file having
the same name.

When using the append mode with a"*.*" file specification, the calling
program must ensure that files already in the existing compressed file
won't be found, because this would put a second copy of the files into the
destination compressed file.

The date and time arguments must be given exactly as shown. See the
FixDate and FixTime functions elsewhere in this manual; these can be
used to ensure that the date and time formats are consistent with what is
expected.

CRESCENT SOFTWARE. INC. ■ 2-23

Reference The Compression Worlcshap

CWReadNames (subroutine)

■ Purpose:

Fills a TYPE array with the names, dates, times, and original sizes of all
the files stored in a compressed file.

■ Syntax:

CALL CWReadNames(Fi leName$, TypeArray(), ErrCode%)

■ Where:

FileName$: Name of an existing compressed file
TypeArray(): A special TYPE array that returns the name, date, time,

and original size of the individual files (see below)
Return value as listed in the section Error Codes ErrCode%:

■ Comments:

The array passed as TypeArrayO is constructed as follows:

TYPE CWType
Fi leName AS STRING * 12
FileDate AS STRING* 3 'CHR$(Year) + CHR$(Month) + CHR$(Day)
FileTime AS STRING* 3 'CHR$(Hour) + CHR$(Minute) + CHR$(Second)
Fi leSize AS LONG

END TYPE

The array can be any size, as it will be redimensioned to the proper size
by CWReadNames. However, the array must be dynamic so its size can
be changed.

You can therefore determine how many files are present in a compressed
file by calling CWReadNames to read their names, and then examine the
upper bound using UBOUND like this:

REDIM CW(I TO I) AS CWType
CALL CWReadNames(Fi leName$, CW(), ErrCode%)
PRINT "There are"; UBOUNO(CW); "files present."

The time and date are returned as shown above to facilitate comparing
them. For example, you could sort a list of files based on their dates using
the following code, perhaps within a bubble sort:

■ 2-24

IF CW(X).FileDate > CW(X + l).FileDate THEN
SWAP CW(X). CW(X + I)

END IF

CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

And to compare based on both the file dates and times you could
concatenate the strings like this:

IF CW(X). Fi leDate + CW(X). Fi leTime >
CW(X + l).FileDate + CW(X + l).FileTime THEN

SWAP CW(X), CW(X + 1)
END IF

CRESCENT SOFTWARE, INC. ■ 2-25

Reference The Compression Workshc,p

CWReleaseMem (subroutine)

■ Purpose:

Releases memory allocated by the compression and decompression
routines.

■ Syntax:

CALL CWRe leaseMem(Mode%)

■ Where:

Mode%= 0:
Mode%= I:

■ Comments:

Release memory allocated by the file routines
Release memory allocated by the array and string
routines

Only routines that compress and decompress allocate memory. The firs1
call made to one 0f those routines will allocate the required memory.
BASIC's far heap is reduced making the memory accessible only to
subsequent calls to the compression and decompression routines. When
the memory is needed for other use it should be released by calling
CWReleaseMem.

It is not strictly necessary to call CWReleaseMem prior to ending •
program once it has been compiled, since DOS will reclaim the memo!)
when the program ends anyway. However, if the program is run in th,
BASIC editor and it ends without releasing the memory, the next time th,
program is run that much less memory will be available. After running
the program a few times you 'II then receive an "Out of memory" error.
If that happens you should quit BASIC and restart it again.

Although you could press F6 to get to the immediate window and ente1
CALL CWReleaseMem(Mode), that relinquishes only the most recent!)
allocated memory. Any memory that was used by the Compressior
Workshop from earlier runs will not be returned to BASIC.

IMPORTANT: if you are using both the memory and file compressior
routines you must call CWReleaseMem twice-once with a Mode valut
of zero and once again with a Mode value of one.

■ 2-26 CRESCENT SOFTWARE, INC

The Compression Workshap Reference

CWSetMaxSize (subroutine)

■ Purpose:

Sets the maximum compressed file size for the CWPackFiles and CWPack
FilesD routines.

■ Syntax:

CALL CWSetMaxS i ze (MaxS i ze&)

■ Where:

MaxSize&: Long integer value

■ Comments:

CWSetMaxSize is useful for ensuring that a compressed file being created
on a hard disk will fit when copied to a floppy disk. Of course, you can
simply compress a series of files and then use DIR to see how large the
resulting compressed file is. However, CWSetMaxSize lets you con
veniently create files that are guaranteed to fit. If the size you specify is
reached and there are still more input files to be added, you can call
CWPackFiles or CWPackFilesD again to continue adding them to other,
subsequent compressed files.

The default is no limit on compressed file size. You can use this routine
to force ErrCode to -9 when a compressed file reaches the limit. Once
set, this limit is honored by all of the compression routines. To remove a
previously set limit call CWSetMaxSize with MaxSize& set to 0.

CRESCENT SOFfWARE. INC. ■ 2-27

Reference The Compression Workshap

CWUnpackFiles (subroutine)

■ Purpose:

Decompresses all files that match a given search specification.

■ Syntax:

CALL CWUnpackFi les(Fi leName$, Spec$, ErrCode%)

■ Where:

FileName$:
Spec$:

ErrCode%:

■ Comments:

Name of the compressed file
Specification for the file(s) to decompress, may include
a path, may contain the(*) wildcard, the(?) wildcard is
not supported
Return value as listed in the section Error Codes

All files found in the compressed file that match the given specification
are decompressed. Any existing files will be overwritten.

If a path name precedes the file specification, the files are placed there
instead of in the current directory. This path name may of course contain
a drive letter, a directory name, or both.

■ 2-28 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

CWUnpackFilesD (subroutine)

■ Purpose:

Decompresses files that match the search specification overwriting only
older versions.

■ Syntax:

CALL CWUnpackFi lesD(Fi leName$, Spec$, ErrCode%)

■ Where:

FileName$:
Spec$:

ErrCode%:

■ Comments:

Name of the compressed file
Specification for the file(s) to decompress, may include
a path, may contain the (*) wildcard, the (?) wildcard is
not supported
Return value as listed in the section Error Codes

All files found in the compressed file that match the specification and are
either not present or are newer than any existing files in the current or
stated directory will be decompressed.

If a path name precedes the file specification, the files are placed there
instead of in the current directory.

You can optionally specify that only files that are newer and also already
exist be unpacked by setting ErrCode% to any non-zero value before
calling CWUnpackFilesD. This is useful for distributing product updates,
where you originally allowed the user to install only selected files. When
updating the files with the newer versions, only those files that has already
been installed will be updated.

CRESCENT SOFfWARE, INC. ■ 2-29

Reference The Compression Worlcshc,p

CWUpdate (subroutine)

■ Purpose

Updates one or more files in an existing compressed file.

■ Syntax:

CALL CWUpdate(FileName$, TmpFile$, ErrCode%)

■ Where:

FileName$:
TmpFile$:
ErrCode%:

■ Comments:

Name of an existing compressed file
Name of the temporary work file
Return value as listed in the section Error Codes

The current directory is searched for newer files that correspond to files
already present in the compressed file. The compressed file is then
updated with those files. If the new files are located in another directory
then you should change to that directory using BASIC's CHOIR command,
and specify the full path to the compressed file being processed.

The TmpFile$ file name specifies a temporary work file that CWUpdate
needs as it processes the main compressed file. This temporary file is
used to build a new compressed file holding the updated versions of each
internal file. It is then copied over the original compressed file when
CWUpdate is finished, and the temporary file is deleted.

The temporary file name may contain a drive and path if you want, perhaps
to specify a RAM drive for faster processing. When processing a
compressed file that is on a floppy disk, you may want to use a hard disk
to prevent a "Disk full" error if the floppy does not have enough room
for both the original and temporary files.

Some users set a TMP or TEMP environment variable to specify where
temporary files such as this are to be written. The CWPACK.BAS utility
shows how to look for such environment variables, and use that drive and
path if present.

■ 2-30 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

DISPLAY MEMORY ROUTINES

CRESCENT SOFfWARE, INC. ■ 2-31

Reference The Compression Workahc,p

This page intentionally left blank.

■ 2-32 CRESCENT SOFTWARE, INC.

The Compression Workshap Reference

CWArray2Scrn (subroutine)

■ Purpose:

Copies a BASIC dynamic array to the text screen or other memory area.

■ Syntax:

CALL CWArray2Scrn(Segment%, Address%, NumBytes%, Array())

■ Where:

Segment%:

Address%:
NumBytes%:

ArrayO:

■ Comments:

&HB800 for a color text screen, &HBOOO for
monochrome, or any arbitrary segment
The address within Segment%, usually zero
Number of bytes to copy, use a long integer for values
between 32,767 and 65,535
Source array, must be dynamic

This routine complements CWScrn2Array, and it is used to restore the
data to the original location in screen memory.

CRESCENT SOFTWARE, INC, ■ 2-33

Reference The Compression Worbh<>p

CWScrn2Array (subroutine)

■ Purpose:

Copies a text screen or other area of memory to a BASIC dynamic array.

■ Syntax:

CALL CWScrn2Array(Segment%. Address%. Num6ytes%, Array())

■ Where:

Segment%: &HB800 for a color text screen, &HB000 for
monochrome, or any arbitrary segment

Address%: The address within Segment%, usually zero
NumBytes % : Number of bytes to copy, use a long integer for values

between 32,767 and 65,535
ArrayO: Destination array, must be dynamic

■ Comments:

The routines in the Compression Workshop expect arrays as parameters,
rather than memory segments and addresses. This routine lets you copy
text or graphics screens (or nearly any memory area) to a BASIC dynamic
array, which can in turn be compressed. Note that you must properly
dimension the array to receive the screen or memory contents before
calling CWScrn2Array.

■ 2-34 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

CRITICAL ERROR HANDLING

CRESCENT SOFTWARE, INC. ■ 2-35

Reference The Compression Workshop

This page intentionally left blank.

■ 2-36 CRESCENT SOFTWARE, INC.

The Compression Workshap Reference

CWCritErr (function)

■ Purpose:

Returns the DOS critical error code after a critical error occurred.

■ Syntax:

CritCode = CWCritErr%

■ Where:

CritCode receives one of the standard DOS critical error codes shown
below:

CritCode = 0
CritCode = 1
CritCode = 2
CritCode = 3
CritCode = 4
CritCode = 5
CritCode = 6
CritCode = 7
CritCode = 8
CritCode = 9
CritCode = 10
CritCode = 11
CritCode = 12
CritCode = 15

■ Comments:

Disk write-protected
Invalid drive
Drive not ready
Unknown command
CRC data error
Bad request length
Seek error
Unknown disk format
Sector not found
Printer out of paper (not possible here)
Write fault
Read fault
Other error
Invalid disk change (DOS 3.0 or later only)

Because CWCritErr has been designed as a function, it must be declared
before it may be used.

When any of the routines in this library return a value of-10 for ErrCode,
you should call CWCritErr to retrieve the actual DOS critical error code.

See the section Error Codes for more information about DOS critical
errors.

CRESCENT SOITWARE. INC. ■ 2-37

Reference The Compression Workshap

This page intentionally left blank.

■ 2-38 CRESCENT SOFfWARE, INC.

The Compression Workshop

TIME AND DATE FORMATTING
ROUTINES

CRESCENT SOFfWARE, INC.

Reference

■ 2-39

Reference The Compression Workahop

This page intentionally left blank.

■ 2-40 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

FixDate (BASIC function)

■ Purpose:

FixDate accepts a date in a variety of formats, and returns the same date
in a form that is consistent with what CWPackFilesD expects.

■ Syntax:

FixedDate$ = FixDate$(AnyDate$)

■ Where:

AnyDate$ can be in the form MM-DD-YY or M/D/YYYY or any such
combination. FixedDate$ then receives the date in the form MM-DD-
19YY.

■ Comments:

Because FixDate has been designed as a function, it must be declared
before it may be used. Further, FixDate is a BASIC function contained
in the DATETIME.BAS file. This file must be loaded as a module and
later linked with your main BASIC program.

FixDate$ lets you accept a date from the user and use that as an argument
to CWPackFilesD, confident that the information is in the correct format.

CRESCENT SOFrWARE, INC. ■ 2-41

Reference The Compression Workshap

FixTime (BASIC function)

■ Purpose:

FixTime accepts a time in a variety of formats, and returns the same time
in a form that is consistent with what CWPackFilesD expects.

■ Syntax:

FixedTime$ = FixTime$(AnyTime$)

■ Where:

AnyTime$ can be in the form HH:MM:SS or H-M-S or any such
combination. FixedTime$ then receives the time in the form HH:MM:SS.

■ Comments:

Because FixTime has been designed as a function, it must be declared
before it may be ustd. Further, FixTime is a BASIC function contained
in the DATETIME.BAS file. This file must be loaded as a module and
later linked with your main BASIC program.

FixTime$ lets you accept a time from the user and use that as an argument
to PackFilesD, confident that the information is in the correct format.

■ 2-42 CRESCENT SOFTWARE. INC.

The Compression Workshop

QUICKPAK PROFESSIONAL
ROUTINES

Reference

The routines described in this section are from our QuickPak Professional
product, and they are included for use by the backup and restore
subprograms and also by CWPACK. They are documented here because
you are likely to find them useful, especially if you don't already have
QuickPak Professional.

CRESCENT SOITWARE, INC. ■ 2-43

Reference The Compression Workshap

This page intentionally left blank.

■ 2-44 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

DCount (function)

■ Purpose:

DCount reports the number of directories that match a given specification.

■ Syntax:

Count = DCount%(Di rSpec$)

■ Where:

DirSpec$ holds a DOS directory name specification such as "C:*. *", and
Count receives the number of matching directory names.

■ Comments:

Because DCount has been designed as a function it must be declared before
it may be used.

DCount is intended to provide a count of the directories in preparation for
using ReadDir to read their names. Where FCount provides a count of
file names that match a given specification, DCount instead searches for
directory names.

Most people th ink of the DOS wild cards (? and *) as being applicable
only to file names. However, they are also intended to be used with
directory names. For example, to determine the number of directories
that are under the root directory of drive C: you would use "C:I*. *" as
the search specification.

CRESCENT SOFTWARE, INC. ■ 2-45

Reference The Compression Workshap

ErrorMsg (function)

■ Purpose:

ErrorMsg returns an appropriate message string given any of the BASIC
error numbers that relate to a DOS error.

■ Syntax:

Message$ = E rrorMsg$ (E rrorNumber%)

■ Where:

ErrorNumber% is a valid BASIC error number for a DOS operation, and
Message$ receives the equivalent message text. For example, given the
value 53 ErrorMsg$ will return the string "File not found fl.

■ Comments:

Because ErrorMsg has been designed as a function it must be declared
before it may be used.

Regardless of how you intend to handle DOS and other errors in your
programs, at some point you will probably need to print a message that
indicates what went wrong. ErrorMsg provides a simple way to add the
standard BASIC error messages without requiring the string memory that
would otherwise be taken if you had a series of PRINT or assignment
statements.

The text for each message is kept in a table in the program's code segment,
and this table is organized such that it may be easily modified or expanded.
See the assembly language source code for details on how to do this if you
are so inclined.

■ 2-46 CRESCENT SOFI"WARE, INC.

The Compression Workshop Reference

Exist (function)

■ Purpose:

Exist will quickly determine the presence of a file.

■ Syntax:

There = Exist%(Fi leName$)

■ Where:

FileName$ is the file or file specification whose presence is being
determined, and There is assigned either to -1 if the file exists, or O if it
does not.

The FileName$ parameter may optionally contain a drive letter, a directory
path, and either of the DOS wild cards. For example, "B: \STUFF* .BAS"
would tell if any BASIC program files are present on drive Bin the \STUFF
directory.

■ Comments

Because Exist has been designed as a function, it must be declared before
it may be used.

The main purpose of Exist is to prevent the error caused by attempting to
open a file for input when it does not exist. Rather than having to set up
an ON ERROR trap just prior to each attempt to open a file, Exist will
directly tell if the file is present.

CRESCENT SOFTWARE, INC. ■ 2-47

Reference The Compression Workshop

FClose (subroutine)

■ Purpose:

FClose closes a file that was previously opened with FOpen.

■ Syntax:

CALL FClose(Handle%)

■ Where:

Handle% is the DOS file handle that was returned when the file was first
opened.

■ Comments:

The only error likely to occur when using FClose would be caused by
giving an invalid file handle. Errors are detected using the WhichError
function described elsewhere in this manual.

Be careful not to accidentally call FClose with a value of zero, or you will
disable the keyboard requiring the PC to be rebooted. FOpen never
returns a handle value of zero, but this could happen if you accidentally
misspell the handle variable's name.

■ 2-48 CRESCENT SOFTWARE. INC.

The Compression Workshop Reference

FCount (function)

■ Purpose:

FCount reports the number of files that match a given specification.

■ Syntax:

Count = FCount%(Fi leSpec$)

■ Where:

FileSpec$ holds a DOS file name specification such as
"C:\BASIC*.BAS", and Count receives the number of matching files.

■ Comments:

Because FCount has been designed as a function it must be declared before
it may be used.

FCount is intended to provide a count of the files in preparation for using
ReadFile to read their names.

You will generally use the DOS wild cards (? and *), to include all of the
files in a given directory or in a particular group. FCount also accepts an
optional drive and directory as part of the file specification.

CRESCENT SOFfWARE, INC. ■ 2-49

Reference The Compression Worksh0p

FCreate (subroutine)

■ Purpose:

FCreate is used to create a file in preparation for opening and writing to
it with the FOpen routine.

■ Syntax:

CALL FCreate(Fi leName$)

■ Where:

FileName$ is any legal file name such as "ACCOUNTS.DAT" or
"C:ICONFIG.BAK"

■ Comments:

FCreate serves the same purpose as BASIC's OPEN FOR OUTPUT
command followed immediately by CLOSE. If the file does not exist it
will be created, and if it is already present it will be truncated to a length
of zero. Programs that use FCreate do not have to use ON ERROR, which
results in improved efficiency.

FCreate will not cause an error if the disk is full, because it does not
attempt to write data to the disk-it merely establishes a directory entry
for the file. In fact, if a file with the same name exists and also contains
data, FCreate will free up the disk space that had been occupied.

There are two possible causes for an error when using FCreate. Either
an invalid file name was given (perhaps a non-existent path or the name
contains wild cards or other illegal characters), or the disk's directory is
full. For example, a 360K floppy disk can accommodate only 112 entries
in its root directory, even if the data area is not filled up.

Errors may be detected with the Which Error function described elsewhere
in this manual.

■ 2-50 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

FGetA (subroutine)

■ Purpose:

FGetA is similar to BASIC's Binary file mode GET command, except it
can read any type of data up to 64K in one operation.

■ Syntax:

CALL FGetA(Handle%. SEG Array(Element), NumBytes%)

■ Where:

Handle% is the DOS file handle that was returned by FOpen when the file
was opened, and Array(Element) specifies where in the array to begin
placing the data as it is read from the file. NumBytes % indicates the
number of bytes to read. If the number of bytes is between 32,767 and
65,535 you should use a long integer variable.

■ Comments:

FGetA (the A stands for Array) reads data from the specified file at the
location held in the DOS file pointer. The current pointer position is
determined by the most recent read or write operation, or by an explicit
Seek command.

CRESCENT SOFTWARE, INC. ■ 2-51

Reference The Compression Workshap

Flof (function)

■ Purpose:

FLof returns the length of a file that has been opened using FOpen. It is
equivalent to BASIC's LOF0 function.

■ Syntax:

Length = Flof&(Handle%)

■ Where:

Handle% is the DOS file handle that was returned by FOpen when the file
was opened, and Length receives the file's length in bytes. If the handle
is invalid, Length instead receives a value of -1 and the WhichError
function is set accordingly.

■ Comments:

Because FLof has been designed as a function it must be declared before
it may be used.

■ 2-52 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

FOpen (subroutine)

■ Purpose:

FOpen is used to open a tile in preparation for reading from or writing to
it using the various QuickPak Professional file access routines.

■ Syntax:

CALL FOpen (Fi leName$, Hand le%)

■ Where:

FileName$ is the name of the file that is to be opened, and Handle% is
assigned by DOS and returned to you for all subsequent references to the
file. If the tile does not already exist or any other error occurs, Handle%
will be set to -1 to indicate the error.

■ Comments:

You may give either a tile name alone, or optionally include a drive. a
path, or both.

It is up to your program to remember the handle that is returned, and use
that handle whenever you access the file again later.

Programs that use FOpen do not have to rely on BASIC's awkward ON
ERROR mechanism.

CRESCENT SOFl'WARE, INC. ■ 2-)J

Refor.:nce The Compression Workshop

FormatDiskette (function)

■ Purpose:

FormatDiskette lets you add disk formatting capabilities to your programs.

■ Syntax:

Result= FormatDiskette%(DriveNumber%. Capacity%. SEG BufArray%(1))

■ Where:

DriveNumher% refers to a physical drive number with drive A represented
as 0, drive B as I, and so forth.

The Capacity% argument is given as whole integer values:

360 = 360K 5.25"
1200 = 1.2MB 5.25"
720 = 720K 3.5"

1440 = 1.44MB 3.5"

BufArray%() serves as a block of memory that FormatDiskette uses as a
work area to hold the disk's FAT (File Allocation Table) as it is being built.

Result then receives a code that tells if formatting was successful. See the
table below for a list of all the possible result codes.

■ Comments:

Because FormatDiskette has been designed as a function it must be
declared before it may be used.

We recommend that you use an integer array as a buffer because it can be
dimensioned before formatting the diskette, and then erased afterward.
We designed FonnatDiskette to require a user-supplied buffer to avoid
having it take the necessary memory permanently from your program.

The table that follows shows how big the buffer must be for each of the
supported diskette capacities. Of course, the buffer can he larger than
necessary and you can use the largest size only, to avoid having to add
extra logic to your programs.

■ 2-54 CRESCENT SOFTWARE. INC.

The Compression Workshop Reference

BYTES
DISK SIZE NEEDED NUMBER OF INTEGER ELEMENTS

360 KB 1060 REDIM BufArray%(1 TO 530)

1.2MB 3644 REDIM BufArray%(1 TO 5822)

720KB 1572 REDIM BufArray%(1 TO 786)

1.44MB 4680 REDIM BufArrav%(1 TO 2340)

In this next table, notice that a result code of zero indicates that the diskette
was formatted successfully; any other value means there was an error.

ERROR

0
1
2
3
4
5
6
7
8
9
10
11
12
16
32
64
128

DESCRIPTION

No error
Invalid disk parameters
Address mark not found
Write protect error
Requested sector not found
Can't locate drive
Disk change I ine is active
Invalid capacity specified
OMA overrun
OMA boundary error
Track zero is bad
Bad sectors found and marked (not fatal)
Media type not found
CRC read error
Disk controller failure
Seek failure
Drive not readv

The only error that is not fatal is 11, which means that bad sectors were
found but they were marked as being bad and will thus cause no harm.
This is the same way the DOS FORMAT program works-as long as track
zero is not defective the rest of the disk is still usable.

FormatDiskette can be used to format a disk to a lower capacity than the
drive is capable of. For example, you can specify a capacity of 360KB
even if the disk drive can handle 1.2MB disks. Likewise, you can specify
that a I .44MB diskette be formatted to only 720KB.

CRESCENT S<JITWARE. INC. ■ ~-55

Reforcnc~ The Compression Workshop

FPutA (subroutine)

■ Purpose:

FPutA is similar to BASIC's Binary file mode PUT command, except it
can write any type of data up to 64K in one operation.

■ Syntax:

CALL FPutA(Handle%, SEG Array(Element), NumBytes%)

■ Where:

Handle% is the DOS file handle that was returned by FOpen when the file
was opened, and Array(Element) tells where in the array the data being
written to the file begins. NumBytes % indicates the number of bytes to
write. If the number of bytes is between 32,767 and 65,535 you should
use a long integer variable.

■ Comments:

FPutA (the A stands for Array) writes data to the specified file at the
location held in the DOS file pointer. The current pointer position is
determined by the most recent read or write operation, or by an explicit
Seek command.

■ 2-56 CRESCENT SOFTWARE. INC.

The Compression Workshap Reference

GetAttr (function)

■ Purpose:

GetAttr examines the directory entry for a specified disk file, and reports
the setting of the file's DOS attribute byte.

■ Syntax:

Attribute = GetAttr%(Fi leName$)

■ Where:

FileName$ is the file being examined, and Attribute is assigned bit-coded
with the file's attributes. If the file does not exist or any other erroroccurs,
the attribute value will be returned as -1.

■ Comments:

Because GetAttr has been designed as a function it must be declared before
it may be used.

The attribute returned by GetAttr is in the form of a single byte, and the
placement of the various bits is illustrated in the table below:

bits 7 6 5 4 3 2 0

0 0

Archive I 11
Subdirectory~
Volume label ·---~

I I Read-only
Hidden
System

You can use BASIC's AND operator to test the individual bits in the
attribute byte. For example, to see if a file has been marked as read-only
you might do this:

IF GetAttr%(Fi leName$) AND I THEN
PRINT Fi leName$; " is a read-only file."

END IF

We use GetAttr in the CWBackUp subprogram to test each file's Archive
bit. This lets CWBackup determine which files have been modified since
the last backup, and thus must be backed up again.

CRESCENT SOFfWARE, INC. ■ 2-57

Reference The Compression Workshc,p

GetDisketteType (function)

■ Purpose:

GetDisketteType returns the type of floppy disk drive that is installed.

■ Syntax:

Result = GetDisketteType%(DriveNumber%)

■ Where:

DriveNumber% refers to the physical drive number as recognized by the
BIOS. That is, drive A is specified with a value of 0, drive B with a value
of I, and so forth.

The result returned i 1dicates the type of drive as follows:

0 = Drive not present or cannot be identified

I = 360KB 5.25"

2 = 1.2MB 5.25"

3 = 720KB 3.5"

4 = 1.44MB 3.5"

■ Comments:

40 tracks

80 tracks

80 tracks

80 tracks

Because GetDisketteType has been designed as a function it must be
declared before it may be used.

In most cases you will use GetDisketteType before calling FormatDiskette,
to ensure that you specify appropriate parameters. Once the drive type is
known you can then proceed to format the diskette.

■ 2-58 CRESCENT SOFfWARE, INC.

The Compression Workshap Reference

GetVol (function)

■ Purpose:

GetVol obtains the disk volume label for either a specified drive or the
current default drive.

■ Syntax:

Volume$ = GetVol$(Drive$)

■ Where:

Drive$ is either an upper or lower case letter that represents the disk drive
to check, or a null string to indicate the current default drive. Volume$
is then assigned the disk's volume label, or a null string if there is no label.

■ Comments:

Because Get Vol has been designed as a function it must be declared before
it may be used.

Some programmers like to use a disk's volume label as a way of keeping
track of its contents. We use the disk volume label in the CWBackup and
CWRestore routines to be sure the correct disk has been inserted during
the restore process.

CRESCEITT SOFTWARE, INC. ■ 2-59

Reference The Compression Workshap

lnterruptX (subroutine)

■ Purpose:

The version of InterruptX provided with the Compression Workshop is
similar to the routine of the same name that comes with most versions of
Microsoft BASIC.

■ Syntax:

CALL InterruptX(IntNumber%, Registers)

■ Where:

IntNumber% is the interrupt to invoke, and Registers is the TYPE variable
that holds the register values for the interrupt.

■ Comments:

This version ofinterruptX is from our P.D.Q. product, and it differs from
the regular BASIC version in that only one instance of the Registers TYPE
variable is passed. The same TYPE variable is used for both the incoming
and outgoing register values. We made this change to improve the
efficiency of the routine.

Since lnterruptX is not a built-in BASIC command, providing it in the
same Quick Library with the other Compression Workshop routines
eliminates your having to combine the BASIC version with the
CWSHOP.QLB file.

■ 2-60 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

MakeDir (subroutine)

■ Purpose:

MakeDir creates a subdirectory in the same way as BASIC's MKDIR
command, but without requiring the use of ON ERROR.

■ Syntax:

CALL MakeDir(DirName$)

■ Where:

DirName$ is the name of the directory to create, and may optionally
include a drive letter or path.

■ Comments:

The only errors that are likely to happen when calling MakeDir are
specifying an invalid drive letter, or a parent directory that does not exist.
Errors are detected with the WhichError function described elsewhere in
this manual.

CRESCENT SOFTWARE. INC. ■ 2-61

Reference The Compression Workshap

MidChar (function)

■ Purpose:

MidChar returns the ASCII value for a single character within a string.

■ Syntax:

Char = MidChar%(Work$. Posit ion%)

■ Where:

Char receives the ASCII varue for the specified character, or -1 if
Position% is less than I or past the end of Work$.

■ Comments:

Because MidChar has been designed as a function it must be declared
before it may be used.

MidChar is substantially faster and more efficient than BASIC's MID$
function. MID$ extracts a copy of the specified portion of the string, and
therefore must allocate memory to hold that copy. Since MidChar is an
integer function it can operate much more quickly than MID$. Further,
integer comparisons are always more efficient than equivalent string
operations, which provides even more improvement when you sub
sequently compare the value returned by MidChar.

■ 2-62 CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

PDQTimer (function)

■ Purpose:

PDQTimer returns the number of timer ticks stored in the BIOS data area
in low memory.

■ Syntax:

NumTicks = POQTimer&

■ Where:

NumTicks receives the contents of the four-byte system timer at Hex
address 0040:006C in low memory.

■ Comments:

Because PDQTimer has been designed as a function it must be declared
before it may be used.

Unlike BASIC's TIMER function that requires the use of floating point
math, PDQTimer returns a long integer result. For programs that
otherwise do not need floating point math, using PDQTimer can reduce
the .EXE file size by as much as IOK.

CRESCENT SOFfWARE, INC. ■ 2-63

Reference The Compression Workshap

PutVol (subroutine)

■ Purpose:

Put Vol creates a disk volume label for either a specified drive or the current
default drive. If a volume label already exists PutVol will replace it.

■ Syntax:

CALL PutVol(Drive$. Label$)

■ Where:

Drive$ is either an upper or lower case letter that represents the disk drive
to access, or a null string to indicate the current default drive. Label$ is
then written to the disk's directory as the new volume label.

■ Comments:

Some programmers like to use a disk's volume label as a way of keeping
track of its contents. We use the disk volume label in the CWBackup and
CWRestore routines tc, be sure the correct disk has been inserted during
the restore process.

■ 2-64 CRESCENT SOFfWARE, INC.

The Compression Work.shoe Reference

ReadDir (subroutine)

■ Purpose:

ReadDir obtains a list of directory names from disk, and loads them into
a conventional (not fixed-length) string array in one operation.

■ Syntax:

CALL ReadDir(BYVAL VARPTR(Array$(0))

■ Where:

Array$(0) holds the directory name search specification, and subsequent
array elements receive the matching directory names.

■ Comments:

It is essential that enough elements be set aside in the array to hold all of
the anticipated directory names. Further, each element must be initialized
to a length of at least 12 spaces to hold the name. You should invoke the
DCount function to determine how large to dimension the array, and then
use a FOR/NEXT loop to initialize each array element before calling
ReadDir:

Spec$= "C:*.*" 'this is the specification
NumDirs = DCount%(Spec$) 'how many names match?
REDIM Array$(0 TO NumDirs) 'create an array to hold them

FOR X = 1 TO NumDirs 'pad each element to 12 spaces
Array$(X) = SPACE$(12)

NEXT

Array$(0) = Spec$ 'show Read□ ir what names to load
CALL ReadDir(BYVAL VARPTR(Array$(D)) 'read the names

FOR X = I TO NumDirs
PRINT Array$(X)

NEXT

CRESCENT SOFTWARE. INC.

'display the results

■ 2-65

Reference The Compression Worbhap

ReadFile (subroutine)

■ Purpose:

ReadFile obtains a list of file names from disk, and loads them into a
conventional (not fixed-length) string array in one operation.

■ Syntax

CALL ReadFile(BYVAL VARPTR(Array$(0))

■ Where:

Array$(0) holds the file name search specification, and subsequent array
elements receive the matching file names.

■ Comments:

It is essential that enough elements be set aside in the array to hold all of
the anticipated file names. Further, each element must be initialized to a
length of at least 12 spaces to hold the name. You should invoke the
FCount function to d :termine how large to dimension the array, and then
use a FOR/NEXT loop to initialize each array element before calling
ReadFile:

■ 2-66

Spec$ = "C \BASIC*.BAS"
NumF i les = FCount%(Spec$)
REDIM Array$ (0 TO NumF i les)

FOR X = 1 TO NumFi les
Array$(X) = SPACE$(12)

NEXT

'this is the specification
'how many names match?
'create an array to hold them

'pad each element to 12 spaces

Array$ (0) = Spec$ 'show ReadF i le what names to load
CALL ReadFi le(BYVAL VARPTR(Array$(0)) 'read the names

FOR X = 1 TO NumFi les
PRINT Array$(X)

NEXT

'display the results

CRESCENT SOFTWARE, INC.

The Compression Workshop Reference

SetAttr (subroutine)

■ Purpose:

SetAttr sets a file's attributes entry in the disk directory.

■ Syntax:

CALL SetAttr(Fi leName$, Attribute%)

■ Where:

FileName$ is the file in question, and Attribute% is bit-coded with the
new attributes to set it to.

■ Comments:

Every file has an attribute that is assigned at the time it is created. The
attribute information is kept in a disk's directory, along with each file's
name, date, time, and size.

The table below shows some common values for the attribute byte:

I = Read-only
2 = Hidden

32 = Archive
0 = Remove all attributes

We use SetAttr in the CWBackup subprogram to clear each file's Archive
bit as it is being backed up. See GetAttr for more information on each of
the possible file attributes.

CRESCENT SOFTWARE, INC. ■ 2-67

Reference The Compression Workshap

WhichError (function)

■ Pµrpose:

WhichError reports if an error occurred during the most recent call to a
QuickPak Professional DOS routine or function.

■ Syntax:

Result = WhichError%
IF Result THEN PRINT "Error"; Result; "occurred."

■ Where:

Result receives a value that corresponds to a BASIC error number, or zero
if no error occurred. For example, calling FOpen with the name of a file
that doesn't exist causes WhichError to return a value of 53 ("File not
found").

■ Comments:

Because WhichErroi" has been designed as a function it must be declared
before it may be used.

All of the QuickPak Professional DOS routines that are provided in the
Compression Workshop can handle and trap DOS critical errors. Which
Error is therefore used to prevent fatal errors in the CWBackup and
CW Restore routines that would otherwise crash your program if the disks
are not ready.

■ 2-68 CRESCENT SOFTWARE. INC

Chapter 3

Utilities

The Compression Workshop

THE CWPACK AND CWUNPACK
UTILITIES

Ulilitics

CWPACK and CWUNPACK serve both as demonstrations for using the
various Compression Workshop routines, and also as useful utility
programs in their own right. These utilities are modeled loosely after the
popular PKZIP and PKUNZIP programs, and they let you easily com
press, combine, and decompress one or more disk files in a single
compressed file.

You specify which files are to be compressed or decompressed and what
options you want using command-line parameters. Several of the options
require an additional parameter-for example, the /L switch lets you
specify a list file which holds the names of the files to be added or removed
from the compressed file. Each item in the list file may be either a file
name or a legal file specification such as * .BAS, and each item should be
on a line by itself.

You may either use a switch alone, or follow it with the information that
is expected. In this case, if you enter /L with no file name you will be
prompted for it. Otherwise you can specify the name after the /L switch
like this:

CWPACK FILENAME /L LISTFILE.LST

These programs are provided in both BASIC and executable form. We
used our P.D.Q. library to create the .EXE versions of these utilities to
make them as small as possible. It is not necessary to own P.D.Q. if you
want to modify and recompile them. However, BASIC's COMMAND$
function converts all text to upper case, so linking with P.D.Q. is needed
to preserve the capitalization of file comments passed on the command
line.

Using CWPACK

CWPACK lets you compress any number of input files and combine them
into a single compressed file. You can optionally create multiple com
pressed files to allow fitting many input files onto a series of floppy disks.

CWPACK can also create a self-extracting .EXE program from a com
pressed file. When run, the program extracts all of the files it contains to
the current directory, and optionally runs another program.

CRESCENT SOFTWARE, INC. ■ 3-1

Utililies The Compression WorkshoP

The general syntax for using CWPACK is as follows:

CWPACK filename [opt ions]

The file name must be given first on the command line before any of the
optional switches. If no extension is given .CWF is assumed. When
adding or updating files in a compressed file, a file specification of"*.*"
is assumed unless you specify otherwise. When removing files from a
compressed file you must give a file specification. The question mark
wildcard character (?) is not recognized by CWPACK except when adding
or appending files.

Each of the available option switches is listed below, along with a brief
description. Those options that accept a parameter have the parameter
shown in brackets. All of the parameters shown in brackets are mandatory,
except the keyboard command that can be added to self-extracting
compressed files. Again, if a switch that requires a parameter is used but
the parameter is not given, you will be prompted for it when the program
runs.

I A [filespec] S!Jecifies which files are to be appended to an existing
compressed file.

IC [comment] Add a comment to the compressed file. Comments
may be added to newly created files only; you cannot
add or change the comment in an existing com
pressed file.

ID [date [, time]] Compress only files that are later than the specified
date and time. By default all of the files in the current
directory that are newer than the given date will be
added, though you can override that with the IS
switch (see below). Using IS therefore lets you
further discriminate as to which files will be added.

IL [filename]

■ 3-2

Notice that the time is optional and, if given, must
be separated from the date with a comma. If the file
time is omitted, midnight is assumed.

Use a response file which contains a list of file
names. When IL is used, each file whose name
appears in the I ist is added to or removed from the
compressed file. The IL option is mutually exclusive
of the IS switch, and any specification given using
IS is ignored when IL is used.

CRESCENT SOFfWARE. INC.

The Compression Workshop Utilities

/M [program] Convert a compressed file to a self-extracting .EXE
program. If /M is used you may also specify the
name of a program that is to be run automatically
when the self-extracting program finishes. The
name of the program is limited to eight characters,
and thus cannot include a drive or path specification.

/R [filespec] Remove files from a compressed file. You may either
give a DOS file specification, or use /R in conjunc
tion with the /L switch. If you use /L CWPACK will
read the names of the files to be removed from the
specified list file.

/S [filespec] File specification for adding input files into a com
pressed file. By default, CWPACK uses *. * when
determining which files are to be added. You can
override that with the /S switch, either to include only
certain files or to specify that the files are located in
another directory.

/U

/V

You may use only one file specification at a time with
CWPACK. To add, say, all of the files that match
* .BAS and also* .MAK you should invoke CWPACK
twice-the first time to create the compressed file
including *.BAS, and the second time to append to
it with *.MAK.

Update an existing compressed file from files in the
current directory. When /U is given, all of the files
that are present in the compressed file and are also
in the current directory will be updated. If you want
to update files individually you must use CWPACK
first with /R (remove) and then again with I A (ap
pend).

View a compressed file's contents. This leaves the
compressed file unchanged, and simply displays a
list of the files it contains along with their original
dates, times, and sizes.

Using CWU N PACK

CWUNPACK extracts files from a compressed file, and is similar in
operation to CWPACK. The general syntax for using CWUNPACK is:

CRESCENT SOITWARE. INC. ■ 3-3

Utilities The Compression Workshap

CWUNPACK filename [opt ions)

All of the available option switches that CWUNPACK recognizes are listed
below.

ID

/L [filename]

/0 [path]

/S [filespec]

/T [pathname]

/V

Unpack only files that do not exist or are newer than
existing files. You may use ID either with or without
a list file (see /L below).

Use a list file containing the names of the files to be
unpacked.

Specify a destination path to override the path that
may already be present in the list file. This option
is for use in conjunction with /L only, and is ignored
if /L is not used.

Specify which files are to be decompressed.

Specify a target directory into which the files will be
d~compressed. This switch is not meant for use with
a list file; that is what /0 is for.

View a compressed file's contents. This leaves the
compressed file unchanged, and simply displays a
list of the files it contains along with their original
dates, times, and sizes.

THE INSTALL UTILITY

This program installs applications contained in one or more compressed
files (having a . CWF extension), and those files may be installed from any
number of distribution diskettes. There are several installation options
for added flexibility: you may direct INSTALL to place each .CWF file's
contents into the user's default drive and directory, a single drive and/or
directory that you specify, or even different directories for each .CWF
file. You may also use the . CWF file comment fields to display a brief
description of what they contain.

Using Install

Individual . CFW files are selected for installation by the user by pressing
the space bar. Each time the spacebar is pressed while a particular . CWF

■ 3-4 CRESCENT SOFTWARE, INC.

The Compression Workshop Utilities

file name is highlighted, a check mark is turned on or off. Once the desired
files are marked for installation the user presses F2 to begin.

If the destination directory does not exist INSTALL will create it. The
Tab key toggles between editing the destination directories and selecting
files for installation. The Escape key ends the program. These options
are shown at the bottom of the main screen, and operating INSTALL
should be simple enough for even the most inexperienced user to com
prehend.

Setting Up For Installation

You may use any number of distribution diskettes, and each may contain
up to 19 .CWF files. However, if you will be installing from more than
one disk you must put a file named NUMDISKS.# onto the first distribution
disk (the one that has INSTALL.EXE on it and that you label as "Disk
I"). The NUMDISKS extension (shown above as"#") indicates the total
number of disks, so INSTALL will know to prompt for additional disks.
You can easily create an empty NUMDISKS file from the DOS command
line like this:

REM > A:NUMDISKS.2

Note that DOS won't copy a zero-length file, so this file should be created
directly onto the master distribution disk.

Setting Destination Directories
There are several ways to establish default destination directories for the
files being installed, and a drive letter may also be included as part of the
default directory:

I. If you do nothing at all, the user's current drive and directory
are displayed in the "Destination Directory" field for each of
the files being installed.

2. You can specify a global default destination directory by placing
a file named DEFAULT.DIR in the root directory of the first
distribution disk. The contents of this file specifies the default
directory to install all of the .CWF files to:

COPY CON: A:DEFAULT.DIR <Enter>
C: \PRODUCT <Enter>
<F6> <Enter>

CRESCENT SOFTWARE, INC. ■ 3-.\

Utilities

3.

The Compression Worlcshc,p

You can imbed a directory name into a .CWF file's comment
field. Any directory names found in a comment field override
the directory given in the DEFAULT.DIR file if one was used.

If a .CWF file has a comment field, the comment is displayed to the right
of the file name in the selection menu. To imbed a destination directory
within a comment, append a CHR$(254) box symbol followed by the
directory name:

This contains the main program ■ C:\OIRNAME

Here, the text "This contains the main program" is displayed on the screen,
so the user will know the purpose of this particular .CWF file. The drive
and directory C:IDIRNAME is used as the default destination for instal
lation of this file only. If you prefer, you can specify a default directory
without adding a displayable comment by using only a box and the directory
name for the .CWF file's comment:

■\DIR NAME

or

■D:\DIRNAME

Regardless of whether or not you assign a default destination directory,
the user can override the default and specify a different drive and directory.

You can enter a box character in most editors by pressing and holding the
Alt key, and then typing the digits 2-5-4 in succession on the numeric key
pad. After you have pressed the third digit, release the Alt key and the
box symbol will appear.

Selecting Files for Installation
In some cases your users may not want or need to install all of the files on
the distribution disks. For example, we provide the assembler source code
with our products, but many people aren't interested in assembly language
and may prefer not to waste their disk space with those files.

To have a file selected for installation automatically, append a CHR$(251)
check mark (y) to the end of the comment string, but before the optional
destination path:

This contains the main programY■c:\DIRNAME

or

■ 3-6 CRESCENT SOFfWARE, INC.

The Compression WorkshoP Utilities

This is a comnent with no path V

or

V.:;: \PATHNAME

Files whose comments have no trailing check mark will not be selected,
though the user may of course select those files manually.

The comment portion (before the box and optional check mark) can be up
to 36 characters long, and the directory name portion of the comment
(after the box) can hold as many as 25 characters.

You can also tell INSTALL to run a program automatically by storing its
name in a file named PROGRAM.RUN, and placing that in the root
directory of your first distribution disk. The name of the program must
be no longer than 14 characters, since INSTALL uses the QuickPak
Professional StuffBuf routine to place the name (plus Enter) into the
keyboard buffer.

Installing to Nested Directories
If you are installing to nested directories you must specify that the higher
directory levels be installed first. INSTALL will create the directories if
they are not already present, but it must do this from the top down. For
example, if you have main files that are to go in a directory named
\APPMAIN and ancillary files that are to go in \APPMAIN\SUBDIR,
INSTALL must create \APPMAIN before it can create \APPMAIN\SUB
DIR.

As long as the .CWF files on your distribution disk or disks are in the
correct order this will not be a problem. However, it is possible for a user
to screw this up by changing the directory names during installation.
There is little that can be done about this problem, and if INSTALL is
unable to create a directory is simply ends with an error message.
Likewise, if you include a DEFAULT.DIR file it should contain only a
root-level directory unless you are certain that the upper levels already
exist.

Composite Monitors
INSTALL detects whether a color or monochrome adapter is present, and
adjusts its colors accordingly. Since some die-hards are still using
computers with a composite display (CGA adapter connected to a
monochrome monitor), you can tell your users to use /B on the command

CRESCENT SOFTWARE, INC. ■ J-7

Utilities The Compression Workahc,p

line if the display is unreadable. Many programs use /B for this purpose,
including the Microsoft BASIC editors.

THE BACKUP AND RESTORE
SUBROUTINES

BACKUP.BAS holds both the backup and restore subprograms, and these
are named CWBackup and CWRestore respectively. DEMOBACK.BAS
is a full-featured backup program that also serves as a demonstration, and
DEMOREST.BAS shows how to use the restore subprogram. This section
provides an overview of the backup and restore subprograms and also
detailed syntax descriptions. After that is a discussion of modifications
you may want to make to these routines.

Most modern computers support what is known as the ChangeLine switch,
to let a program know that a disk has been removed from the drive since
the last access. When backing up and restoring on these computers the
routines can determine when the disk is changed automatically and proceed
accordingly. But with older computers the user must press a key to indicate
that the next disk has been inserted. The prompt messages displayed by
CW Backup and CW ,:i.estore are discussed later in the section Modifying
CWBackup and CWRestore.

Using CWBackup

CWBackup accepts a drive letter and starting path, to tell it what files are
to be backed up. You will also tell CWBackup whether it is to include the
subdirectories beneath the initial starting directory, and the drive letter to
store the backup files onto. If one or more of the target diskettes are not
formatted CWBackup will format them automatically, before attempting
to backup files to them.

Only files whose Archive attribute bit is set are backed up, and as each
file is backed up the Archive attribute is cleared. This is how most
commercial backup utilities work. Comments in the BASIC source code
show how to change CWBackup to not test or clear the Archive attribute
if you prefer.

The calling syntax for CWBackup is as follows:

CALL CWBackup(Fi le Spec$, Dest$, Recurse%, ErrCode%)

■ 3-8 CRESCENT SOFTWARE, INC.

The Compression Workshop Utilities

Here, FileSpec$ indicates which files are to be backed up. To back up an
entire hard disk you would specify all of the files starting in the root
directory. For example:

FileSpec$ = "C:*.*"

Dest$ specifies the destination drive letter, and only the first character is
used.

The Recurse% parameter is set to either -1 to include all subdirectories
under the starting directory, or zero to backup only the stated directory.
If you enter /S on the DEMOBACK.BAS command line it will set the
Recurse% parameter to -1 to include subdirectories in the backup set.

ErrorCode% is used for two purposes: to specify a timeout value when
calling CWBackup, and also to return an error code upon completion.
This was done to reduce the number of parameters needed. When calling
CW Backup you should set ErrCode % to the number of seconds it is to
allow for changing disks. The demonstration programs use a value of 20
for this, which means the user has up to 20 seconds to change disks each
time a new disk is prompted for. If a disk isn't changed within that time,
CWBackup will return with ErrCode% set to 255. Any other non-zero
ErrCode% value indicates one of the Compression Workshop's standard
error codes. These are described in the section entitled Error Codes.

The disk volume label on each of the backup disks is set to a unique value
by CWBackup. This volume label is then used later by CWRestore to
ensure the files are restored in the correct order.

Using CWRestore

CWRestore accepts both a source and destination file specification, to tell
it which files to restore and where to place them. Like CWBackup,
CWRestore lets you restore either all directories or only the top level
directory-even if all levels were backed up originally.

You can restore the files to either their original drive and directory, or to
any arbitrary drive or directory. If the destination directory does not yet
exist CWRestore will create it automatically. The volume label for each
disk in the backup set is examined by CWRestore to ensure the files are
handled in the correct order.

The calling syntax for CWRestore is as follows:

CALL CWRestore(File5pec$. Dest$, Recurse%, ErrCode%)

CRESCENT SOFTWARE, INC. ■ 3-9

Ulilities The Compreasion Worlcshap

FileSpec$ indicates which files are to be restored, and is specified using
a full drive and path as follows:

Fi leSpec$ = "d: \path\spec"

Here, the "d:" portion ofFileSpec$ is the letter of the floppy disk.from
which you are restoring, and the "spec" portion specifies which files are
to be restored (for example, *.BAS). The "\path\" portion is optional,
and it indicates the path from which the files being restored originally
came. This lets you indicate which files are to be restored, when the
destination directory is different from the directory in which the files
resided originally. To restore all of the files on drive A: that have a .BAS
extension and were originally backed up from a directory named \BASIC
you will use this:

FileSpec$ = "A:\BASIC*.BAS""

Again, the drive letter A: tells CWRestore where the backed up files now
reside, and the path \BASIC tells CWRestore which files are to be restored.
This lets you distinguish the files you want to restore, in case other files
in the backup set also happen to have a .BAS extension.

Dest$ specifies both the destination drive letter, and also an optional
destination path to let you restore to a directory that is different from the
one in which the files originally came. If no path is given then the files
are restored to the same directories from which they were backed up.

As with CWBackup, the Recurse% parameter is set to either -1 to restore
all subdirectories under the starting backed up directory, or zero to restore
only the top-level directory. Enter IS on the DEMOREST.BAS command
line to set the Recurse% parameter to -1 telling it to include subdirectories.

Also like CWBackup, ErrorCode% specifies both the timeout value when
calling CWRestore and an error code upon return. When calling
CWRestore you set ErrCode% to the number of seconds to allow for
changing disks. If a disk is not changed within that time CWRestore will
return with ErrCode% set to 255. Any other non-zero ErrCode% value
indicates one of the Compression Workshop error codes.

Compiling BACKUP.BAS

You must compile BACKUP.BAS using the /ah (huge array) option switch,
or the CWBackup routine will be limited to 512 files in a single backup
set. It is not necessary to compile your main program or other modules
using /ah, but of course you may if they also require huge array support.

■ 3-10 CRESCENT SOFTWARE, INC.

The Compression Workshop Utilities

Modifying CWBackup and CWRestore

Both CWBackup and CWRestore need to prompt the user when a new
disk is to be inserted. But in the context of add-on subroutines you may
well prefer to implement your own user interface. As provided, these
routines simply print their messages at the current cursor location. If you
wish to change the way messages are displayed, search BACKUP.BAS for
the string "Your user interface here" in the CWBackup, CWRestore,
ErrorHandler, and InsertDisk subprograms.

Another change you might want to make is not have CWBackup test for
and clear each file's archive bit during backup. To do this search
BACKUP.BAS for the string "REM ark" and follow the instructions shown.

CRESCENT SOFTWARE, INC. ■ 3-11

Chapter 4

Technical Details

The Compression WorkshoP Technical Details

TECHNICAL DETAILS

This library is based on a 9-13 bit implementation of the LZW compression
algorithm. To speed up table searching, open address double hashing is
used with a 9,029-element hash table. The performance is very effective
overall, but is directly related to the type of data being compressed. The
sections that follow describe how the LZW algorithm operates, and also
how the Compression Workshop file headers are structured.

LZW Compression Overview

The LZW algorithm is a table-based compression scheme. A table is built
at runtime, and this table is based upon the input data. The output consists
of addresses in that table.

The data is read in a byte at a time. A code and suffix pair is created
consisting of the "hold" value and the input byte. The table is searched,
and if the pair isn't found it is added to the table and the hold value is
output. If it is found, the address where it was found becomes the new
hold value.

Consider the following input stream (the spaces are shown for clarity, and
are not part of the actual input data):

T-loc
256

257

258

259

ABCABCABCABCABC
65 66 67 65 66 67 65 66 67 65 66 67 65 66 67

code suf hold 0/P
65 66 1) The first two bytes are a special case. They are assigned to the

65 table automatically. Then the first byte is output and the second
66 becomes the hold value.

2) The next byte is read in (67) and the table is searched for the
66 67 code/suffa pair we created from the hold value and the input byte

66 (66,67). Since rt is not found rt's added to the table, the hold
67 value is outout, and the inout bvte beomes the new hold value.

3) The next byte is read in (65) and the table is searched for the
67 65 code/suff~ (67,65). Since rt is not found It is added to the table,

65 the hold value is output, and the input byte becomes the new hold
67 value

4) The next byte is read in (66) and the table is searched for the
code/suff~ (65,66). Since It does exist. the address where It was

256 found becomes the new hold value.

5) The next byte is read in (67) and the table is searched for the
256 67 code/suff~ (256, 67). Since It is not found, It is added to the table,

256 the hold value is output, and the input byte again becomes the
67 new hold value

continued ...

CRESCENT SOFTWARE, INC. ■ ~t

Technical Details The Compression Workshap

T-loc code suf hold 0/P
6) The next byte is read in (65) and tile table searched for tile

code/suffix (67,65). Since It does exisL Ille address where It was
256 found becomes the new hold value.

7) The next byte is read in (66) and tile table is searched for tile
260 256 66 code/suffix (256, 66). Since It is not found It is added to tile table,

256 the hold value is output, and the input byte becomes Ille new hold
66 value.

6) The next byte is read in (67) and tile table is searched for tile
code/suffix (66,67). Since It exists the address where It was

257 found becomes tile new hold value.

9) The next byte is read in (65) and the table searched for Ille
261 257 65 code/suffix (257,65.) Since It is not found It is added to Ille table,

257 the old hold value is output, and the input byte becomes Ille new
65 hold value.

10) The' next byte is read in (66) and Ille table searched for tile
code/suffix (65,66). Since It exists, tile address where It was

256 found then becomes the new hold value.

11) The next byte is read in (67) and the table searched for tile
code/suffix (256,67). Since It exists. the address where It was

259 found becomes the new hold value.

12) The next byte is read in (65) and the table is searched for tile
262 259 65 code/suffix (259,65). Since It is not found It is added to tile table.

259 the old hold value is output and the input byte becomes tile new
65 hold value.

13) The next byte is read in (66) and the table is searched for tile
code/suffix (65,66). Since It exists, the address where It was

256 found becomes the new hold value.

14) The next byte is read in (67) and the table is searched for the
code/suffix (256,67). Since It exists. the address where It was

259 found becomes the new hold value.

15) Once the input stream is exhausted, the last hold value is output.
259

The above input stream is 120 bits (15 bytes) and the resulting output is
72 bits (8 codes at 9 bits per code), for a net saving of 6 bytes. The output
codes are shifted and packed according to the size dictated by the current
maximum table address. The Compression Workshop uses 9-13 bits with
a maximum table address of 8,191.

As the amount of input increases, the odds of finding a match are
improved. And the higher codes generally will represent longer "sub
strings" thus improving compression.

Obviously, a sequential table search would be very slow. Therefore, to
speed table searching the Compression Workshop uses open address
double hashing with a hash table size of 9,029 bytes.

■ 4-2 CRESCENT SOFTWARE, INC.

The Compression Workshap Technical Details

LZW Decompression Overview

When a code is read in it is automatically placed into the table as the code
portion of the next available table location. The suffix portion is filled
when the next input code is processed. If the input code is less than 256,
then it is directly output and used as the suffix at T-loc minus I. If the
code is 256 or more, the suffix value at the corresponding table location
is placed into a LIFO (Last In First Out) stack.

If the code at that table location is less than 256, it is placed into the LIFO
stack and used as the suffix at T-loc minus I. If the code is 256 or more,
the suffix value at the corresponding table location is placed into a LIFO
stack, and so forth until a code value of less than 256 is found. Then the
LIFO stack is output.

Consider the codes output from the above example as input:

65 66 67 256 258 257 259 259

T-loc code suf 0/P
256 65 66 1) The first code is read in and placed in the table. Since the first code is

always less than 256 It is output.
65

257 66 67 2) The next code is read in and placed in the table. Since it is less than
66 256 It is outout and olaced as the suit~ at T-loc minus 1.

258 67 65 3) The next code is read in and placed in the table. Since It is less than
67 256 It is output and placed as the suit~ at T-loc minus 1.

259 256 67 4) The next code is read in and placed in the table. Since It is 256, the
suit~ value at T-loc 256 (66) is put into the LIFO stack. The code at
T-loc 256 (65) is less than 256 so It is placed into the LIFO stack and

65 used as the suit~ at T-loc minus 1. The LIFO stack (66,65) is output.
66

260 258 66 5) The next code is read in and placed in the table. Since It is 258, the
suit~ value at T-loc 258 (65) is put into the LIFO stack. The code at
T-loc 258 (67) is less than 256, so It is placed into the LIFO stack and

67 used as the suit~ at T-loc minus 1. The LIFO stack (65,67) is output.
65

261 257 65 6) The next code is read in and placed in the lable. Since It is 257, the
suit~ value at T-loc 257 (67) is put into the LIFO stack. The code at
T-loc 257 (66) is less than 256, so It is placed into the LIFO stack and

66 used as the suit~ at T-loc minus 1. The LIFO stack (67,66) is output.
67

continued ...

CRESCENT SOFTWARE, INC, ■ 4-J

Technical Details The Compression Workshap

262 259 65 7) The next code is read in and placed in the table. Since It is 259 the suffD<
value at T-loc 259 (67) is put into the LIFO stack. The code at T-loc 257
is 256, so the suffix value at T-loc 256 (66) is put into the LIFO stack.
The code at T-loc 256 (65) is less than 256, so It is placed into the LIFO
stack and used as the suffix atT-loc minus 1. The LIFO stack (67,66,65)

65 is output.
66
67

263 259 8) The next code is read in and placed in the table. Since It is 259 the suffD<
value at T-loc 259 (67) is put into the LIFO stack. The code at T-loc 257
is 256, so the suffix value at T-loc 256 (66) is put into the LIFO stack.
The code at T-loc 256 (65) is less than 256, so It is placed into the LIFO
stack and used as the suffix at T-loc minus 1. The LIFO stack (67, 66,

65 65) is output.
66
67 Since that's the last VP code we're done.

The table created is an exact duplicate of the compression table, but with
one extra code.

Compression Workshop File Structures

The following details the file structures used by the various Compression
Workshop routines.

File Compression Routines

• Main Header:

I FSJ r I CL I COMMENT

I
I ~--- Comment string (if one exists, length varies)
-- Word : Length of comment string (or O if none)

'----- DWord : Compressed file ID (always = "FSJr")

, File Headers:

I NHDRITM IDT I SIZEI FN .. , I 01 CJ I DATA

• ~LCompressed (or stored) data

■ 4-4

Byte: Compression indicator
compressed = 13, stored = 0

Null byte to delimit file name
File name (length varies, max = 12)
DWord : File size (original)

c_ _________ Word : File date (original)
~----------- Word : File time (original)

c_ ______________ DWord : location of next header,

zero if this is the last header

CRESCENT SOFTWARE, INC.

The Compression Workshop Technical Details

Array Compression Routines
• Main Header:

IFSJrl

Loword : Compressed file ID (always =

• Array Headers:

"FSJr")

INHDRIIDI BPIDM I ELI ... 1 CII DATA

Byte : Compression indicator: ~
L Compressed (or stored) data

compressed = 13, stored = 0
Word : Number of elements in next

dimension (one word per add'] dimension)
Word : Number of elements in last

dimension
~-----~ Word Total number of dimensions

·--------- Word Bytes per element (length)
Word Array identifier

'-------------- DWord : Location of next header, zero

if this is the last header

CRESCENT SOFTWARE, INC. ■ -1-5

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113

